记F(t)=f(t)-x=a(x-x1)(x-x2)
F(t)为开口向上的抛物线,又x1,x2为F(t)与x轴的两交点
当x0,所以f(t)>x
f(t)=[F(t)+x-x1]+x1
=[a(x-x1)(x-x2)+(x-x1)]+x1
=a(x-x1)(x-x2+1/a)+x1
又x0
所以a(x-x1)(x-x2+1/a)
记F(t)=f(t)-x=a(x-x1)(x-x2)
F(t)为开口向上的抛物线,又x1,x2为F(t)与x轴的两交点
当x0,所以f(t)>x
f(t)=[F(t)+x-x1]+x1
=[a(x-x1)(x-x2)+(x-x1)]+x1
=a(x-x1)(x-x2+1/a)+x1
又x0
所以a(x-x1)(x-x2+1/a)