y=(1+tanx)(cosx)^2
=(cosx)^2+sinx/cosx*(cosx)^2
=(1+cos2x)/2+sinxcosx
=1+1/2*(sin2x+cos2x)
=1+√2/2*sin(2x+π/4)
所以y'=√2/2*cos(2x+π/4)*(2x+π/4)'
=√2cos(2x+π/4)
y=(1+tanx)(cosx)^2
=(cosx)^2+sinx/cosx*(cosx)^2
=(1+cos2x)/2+sinxcosx
=1+1/2*(sin2x+cos2x)
=1+√2/2*sin(2x+π/4)
所以y'=√2/2*cos(2x+π/4)*(2x+π/4)'
=√2cos(2x+π/4)