1)
因为 f(x)是奇函数,所以f(0)=0
即(b-1)/(a+2)=0
则 b=1
因为 f(x)是奇函数,所以f(-1)=-f(1)
即(b-1/2)/(a+1)=-(b-2)/(a+4)
1/[2(a+1)]=1/(a+4)
2(a+1)=a+4
则a=2
综上:a=2,b=1 ;
2)解由(Ⅰ)知f(x)=(1-2^x)/(2+2^(x+1))=-1/2+1/(2^x+1) ,
易知f(x) 在 正负无穷上为减函数.
又因 f(x)是奇函数,
从而不等式:f(t^2-2t)+f(2t^2-k)0 ,从而判别式=4+12kkf(x2),即
f(x)在R上为减函数!