x1+x2=-p x1*x2=q
(1)x1^2+3x1x2+x2^2
=(x1+x2)^2+x1x2
=p^2+q=1 .(i)
(2)x1+1/x1+x2+1/x2
=x1+x2+(x1+x2)/x1x2
=-p-p/q=0 .(ii)
(3)由(i)(ii)得
p+p/q=0
p(1+1/q)=0
得p=1 或1+1/q=0 => q=-1
所以i.p=1 q=0
ii.q=-1 p=0
有上述两解
x1+x2=-p x1*x2=q
(1)x1^2+3x1x2+x2^2
=(x1+x2)^2+x1x2
=p^2+q=1 .(i)
(2)x1+1/x1+x2+1/x2
=x1+x2+(x1+x2)/x1x2
=-p-p/q=0 .(ii)
(3)由(i)(ii)得
p+p/q=0
p(1+1/q)=0
得p=1 或1+1/q=0 => q=-1
所以i.p=1 q=0
ii.q=-1 p=0
有上述两解