设弦两端点坐标为(x1,y1),(x2.y2),弦中点坐标为(x,y).弦所在直线斜率为k
x1²+y1²=2
x2²+y2²=2
相减得(x1+x2)(x1-x2)+(y1+y2)(y1-y2)=0
y1-y2/x1-x2=-(x1+x2)/(y1+y2)
k=y-2/x
而k=-(x1+x2)/(y1+y2)
x1+x2=2x,
y1+y2=2y
则k=-x/y
故有k=y-2/x=-x/y
化简得:x²+y²-2y=0
设弦两端点坐标为(x1,y1),(x2.y2),弦中点坐标为(x,y).弦所在直线斜率为k
x1²+y1²=2
x2²+y2²=2
相减得(x1+x2)(x1-x2)+(y1+y2)(y1-y2)=0
y1-y2/x1-x2=-(x1+x2)/(y1+y2)
k=y-2/x
而k=-(x1+x2)/(y1+y2)
x1+x2=2x,
y1+y2=2y
则k=-x/y
故有k=y-2/x=-x/y
化简得:x²+y²-2y=0