解题思路:(1)当x<0时,-x>0,故f(-x)=-ax3-2ax2-bx+1,再由f(x)是定义在R上的奇函数,能求出函数y=f(x)的解析式.
(2)当x∈[2,3]时,g(x)=
f(x)−1
x
=ax2-2ax+b=a(x-1)2+b-a,由a>0,知g(x)在区间[2,3]上单调递增,由此能求出a,b的值.
(1)当x<0时,-x>0,
故f(-x)=a(-x)3-2a(-x)2+b(-x)+1
=-ax3-2ax2-bx+1,
又因为f(x)是定义在R上的奇函数,
故f(x)=-f(-x)=ax3+2ax2+bx-1,
所以f(x)=
ax3−2ax2+bx+1,x>0
0,x=0
ax3+2ax2+bx−1,x<0.
(2)当x∈[2,3]时,g(x)=
f(x)−1
x=ax2-2ax+b=a(x-1)2+b-a,
∵a>0,∴g(x)在区间[2,3]上单调递增,
故
g(3)=4
g(2)=1,
∴
9a−6a+b=4
4a−4a+b=1,
解得a=1,b=1.
点评:
本题考点: 利用导数求闭区间上函数的最值;函数解析式的求解及常用方法.
考点点评: 本题考查函数的解析式的求法,考查满足条件的实数值的求法.解题时要认真审题,仔细解答,注意合理地进行等价转化.