1、
由题意知:
f(x)=sin(wx+Ф)的周期为2*(π/4-(-π/4))=π
即2π/w=π
所以w=2
由f(π/4)=sin(2*(-π/4)+Ф)=0 得:Ф=π/2
所以f(x)=sin(2x+π/2)
2、sinBsinCcosA=sin2A=2sinAcosA
sinBsinCcosA-2sinAcosA=0
cosA(sinBsinC-2sinA)=0
cosA=0或sinBsinC-2sinA=0
cosA=-cos(B+C)=cosBcosC-sinBsinC
1、
由题意知:
f(x)=sin(wx+Ф)的周期为2*(π/4-(-π/4))=π
即2π/w=π
所以w=2
由f(π/4)=sin(2*(-π/4)+Ф)=0 得:Ф=π/2
所以f(x)=sin(2x+π/2)
2、sinBsinCcosA=sin2A=2sinAcosA
sinBsinCcosA-2sinAcosA=0
cosA(sinBsinC-2sinA)=0
cosA=0或sinBsinC-2sinA=0
cosA=-cos(B+C)=cosBcosC-sinBsinC