a=(x^2+(y-1)^2)^(1/2)*(1+N)
b=(x^2+y^2)^(1/2)*(1+N)
c=((x-1)^2+y^2)^(1/2)*(1-N)
d=((x-1)^2+(y-1)^2)^(1/2)*(1-N)
==
[a/(1+N)]²+[d/(1-N)]²=[b/(1+N)]²+[c/(1-N)]²
S=solve('(a/(1+N))^2+(d/(1-N))^2=(b/(1+N))^2+(c/(1-N))^2','N')
S =
(2*(a^2*c^2 - a^2*d^2 - b^2*c^2 + b^2*d^2)^(1/2) + a^2 - b^2 + c^2 - d^2)/(a^2 - b^2 - c^2 + d^2)
-(2*(a^2*c^2 - a^2*d^2 - b^2*c^2 + b^2*d^2)^(1/2) - a^2 + b^2 - c^2 + d^2)/(a^2 - b^2 - c^2 + d^2)