y"+y' = x²+1,y(0) = 1,y'(0) = -2.
方程不含y,可先将z = y'作为未知函数求解.
由z'+z = x²+1,有(z·e^x)' = (x²+1)·e^x,积分得z·e^x = (x²-2x+3)·e^x+C.
由z(0) = y'(0) = -2得C = -5.
y' = z = x²-2x+3-5e^(-x),积分得y = x³/3-x²+3x+5e^(-x)+D.
由y(0) = 1得D = -4,y = x³/3-x²+3x-4+5e^(-x).
y"+y' = x²+1,y(0) = 1,y'(0) = -2.
方程不含y,可先将z = y'作为未知函数求解.
由z'+z = x²+1,有(z·e^x)' = (x²+1)·e^x,积分得z·e^x = (x²-2x+3)·e^x+C.
由z(0) = y'(0) = -2得C = -5.
y' = z = x²-2x+3-5e^(-x),积分得y = x³/3-x²+3x+5e^(-x)+D.
由y(0) = 1得D = -4,y = x³/3-x²+3x-4+5e^(-x).