解题思路:(1)因为OE∥AC1且OE⊂平面BDE,AC1⊈平面BDE所以AC1∥平面BDE.
(2)由B1E⊥BE且A1B1⊥BE可得BE⊥平面A1B1E.有题意得A1E⊥BE,A1E⊥DE所以A1E⊥平面BDE
(1)证明:连接AC,设AC∩BD=O.由条件得ABCD为正方形,
所以O为AC中点.
∵E为CC1中点,
∴OE∥AC1.
∵OE⊂平面BDE,AC1⊈平面BDE.
∴AC1∥平面BDE.
(2)连接B1E.设AB=a,则在△BB1E中,BE=B1E=
2a,BB1=2a.
∴BE2+B1E2=BB12.
∴B1E⊥BE.
由正四棱柱得,A1B1⊥平面BB1C1C,
∴A1B1⊥BE.
∴BE⊥平面A1B1E.
∴A1E⊥BE.
同理A1E⊥DE.
∴A1E⊥平面BDE.
点评:
本题考点: 直线与平面垂直的判定;直线与平面平行的判定.
考点点评: 夹角线面平行问题的关键是在面内找一条直线与已知直线平行,而线面垂直问题的关键则是直线与面内的两条相交直线都垂直.