令y=f(x)=-1/3cos(2x-π/4)
则 f’(x)=1/3*sin(2x-π/4)*2
=2/3sin(2x-π/4)
令f’(x)>0,即2/3sin(2x-π/4)>0
∴0+2kπ<2x-π/4<π+2kπ
解得π/8+kπ<x<5π/8+kπ (k∈Z)
∴y在(π/8+kπ,5π/8+kπ )上单调递增
令y=f(x)=-1/3cos(2x-π/4)
则 f’(x)=1/3*sin(2x-π/4)*2
=2/3sin(2x-π/4)
令f’(x)>0,即2/3sin(2x-π/4)>0
∴0+2kπ<2x-π/4<π+2kπ
解得π/8+kπ<x<5π/8+kπ (k∈Z)
∴y在(π/8+kπ,5π/8+kπ )上单调递增