(要求5道和不变分数应用题、5道差不变分数应用题、10道部分量不变分数应用题)

1个回答

  • 从变量中找不变量的解题方法:

    (1) 变中有不变——和不变:例:甲、乙两个施工队共180人,从甲队抽出自己人数的2/11调到乙队后,两队人数则相等,求两队原来各有多少人?甲队:180÷2÷(1—2/11)=110(人)

    (2) 变中有不变——差不变:例:甲储蓄2000元,乙储蓄400元.如果从现在开始,每人每月各存200元,几个月后甲储蓄的钱数是乙储蓄的钱数的3倍?(分析:甲比乙多储蓄1600元,而这1600则刚好是乙几个月后钱数的2倍,则列式为:【(2000—400)÷(3—1)—400】÷200=2(个))

    (3) 变中有不变——某一部分量不变:例:要从含盐16%的盐水25千克中蒸发去一部分水,得到含盐40%的盐水,应当蒸发去多少千克水?(析:这道题的总量是盐水的重量,它是由盐和水两个部分量组成.盐水蒸发后,水的重量减少了,盐水的总重量也随它减少,浓度也随着发生了变化.但要看到变中有不变,盐的重量始终没变,抓住盐这个不变量入手分析,便可得出答案:25—25×16%÷40%=15(千克))

    (4) 变中有不变——形变体不变:例:把一个长、宽、高分别为9厘米、7厘米、3厘米的长方体铁块和一个棱长5厘米的正方体铁块,熔铸成一个圆柱体,这个圆柱体底面直径为20厘米,高是多少厘米?(分析:形态虽然发生了变化,但是总体积却没有变化:(9×7×3+5×5×5)÷【3.14×(10×10)】=1厘米)五年级上册的组合图形也可以用这种方法来分析.

    一、抓住和不变

    1、甲乙两个仓库共有水泥180吨,如果甲把它的1/3给乙,甲还比乙多10吨,甲乙原来各有多少吨?

    练习:甲乙两个仓库共有水泥180吨,如果甲把它的1/3给乙,甲还比乙多1/5,甲乙原来各有多少吨?

    2、某校五年级学生参加大扫除的人数是未参加的1/4,后来又有2个同学主动参加,实际参加的人数是未参加人数的1/3,问某班五年级有学生多少人?

    练习:煤气收款员到一幢楼里收煤气差价款,他走出楼时一算,没交款的户数占已交款户数的1/8.如果少收2户,则没交款的户数恰好占已交款户数的1/6,这幢楼有多少住户?

    2、甲、乙两人原有钱的比是3:4,后来甲又给乙50元,这时甲钱是乙的1/2,原来两人各有多少元钱?

    3、小明放一群鸭子,岸上的只数是水中的3/4,从水中上岸9只后,水中的只数与岸上的只数同样多,这群鸭子有多少只?

    二、抓住部分不变

    1、有科技书和文艺书360本,其中科技书占总数的1/9,现在又买来一些科技书,此时科技书占总数的1/6.又买来多少本科技书?

    练习:有10千克蘑菇,它们的含水量是99%,稍经晾晒,含水量下降到98%,晾晒后的蘑菇重多少千克?

    2、现有质量分数为20%的食盐水80克.把这些食盐水变为质量分数为75%的食盐水,需要再加食盐多少克?

    练习:有一堆糖果,其中奶糖占45%,再放16块水果糖后,奶糖就占25%,那么,这堆糖中奶糖有多少块?

    2、在阅览室里,女生占全室人数的1/3,后来又进来5名女生,这时女生占全室人数的5/13,阅览室原有多少人?

    三、抓住差不变

    王叔叔和李叔叔每月工资收入比为3:2,他们两家每月支出为1200元,两家每月结余的钱数比为9;4,王叔叔和李叔叔每月工资各为多少元?

    综合练习:

    1.由奶糖和巧克力混合成的一堆糖中,如果增加10个奶糖,巧克力就占总数的60%,再增加30个巧克力,则巧克力占总数的75%.那么,原来混合糖中奶糖和巧克力各有多少个?

    2、现有浓度为20%的食糖水160克,把这些食糖水变为浓度为75%的食糖水,需加食糖多少克?

    3、乙队原有人数是甲队的3/7.现在从甲队派30人到乙队,则乙队人数是甲队的2/3.甲乙两队原来各有多少人?

    4、有一堆糖果,其中奶糖占9/20,再放入16块水果糖后,奶糖就只占1/4.这一堆糖果原来共有多少块?