因为1/(1×3)=(1-1/3)/2,1/(3×5)=(1/3-1/5)/2.1/(99×101)=(1/99-1/101)/2
所以1/(1×3)+1/(3×5)+.+1/(99×101)
=(1-1/3)/2+(1/3-1/5)/2+(1/5-1/7)/2+.+(1/99-1/101)/2
=[(1-1/3)+(1/3-1/5)+(1/5-1/7)+.+(1/99-1/101)]/2
=(1-1/101)/2
=50/101
因为1/(1×3)=(1-1/3)/2,1/(3×5)=(1/3-1/5)/2.1/(99×101)=(1/99-1/101)/2
所以1/(1×3)+1/(3×5)+.+1/(99×101)
=(1-1/3)/2+(1/3-1/5)/2+(1/5-1/7)/2+.+(1/99-1/101)/2
=[(1-1/3)+(1/3-1/5)+(1/5-1/7)+.+(1/99-1/101)]/2
=(1-1/101)/2
=50/101