(1) 诺AB=3,BC=2
∵∠C=90 根据勾股定理
∴AC=√5
∴sinA=cosB=√5/3
(2) 诺AB=3,BC=√3AC
根据勾股定理 AC=3/2 BC=3√3/2
∴cosA=3/2/3=1/2 cosB=3√3/2/3=√3/2
(3) 诺tanA=3/4,
∵(sinA)^2+(cosA)^2=1
∴sinA=3/5
∴cosB=3/5.
(1) 诺AB=3,BC=2
∵∠C=90 根据勾股定理
∴AC=√5
∴sinA=cosB=√5/3
(2) 诺AB=3,BC=√3AC
根据勾股定理 AC=3/2 BC=3√3/2
∴cosA=3/2/3=1/2 cosB=3√3/2/3=√3/2
(3) 诺tanA=3/4,
∵(sinA)^2+(cosA)^2=1
∴sinA=3/5
∴cosB=3/5.