令y=f(x)
y^2=2xy/3+x^2y'/3
3y^2=2xy+x^2y'
3(y/x)^2=2(y/x)+y'
令u=y/x y=ux y'=u'x+u
3u^2=3u+u'x
3u^2-3u=xdu/dx
dx/x=du/(3u^2-3u)
∫dx/x=∫du/3u(u-1)
ln|x|=1/3*(ln|u-1|-ln|u|)+C
x^3=C*(u-1)/u
因为f(2)=2/9
所以当x=2时,u=y/x=(2/9)/2=1/9
8=C*(1/9-1)/(1/9)
C=-1
所以x^3=1/u-1
u=1/(x^3+1)
y/x=1/(x^3+1)
y=x/(x^3+1)