设a∈R,函数f(x)=cosx(asinx-cosx)+cos2(π2+x)满足f(?π3)=f(0).(1)求f(x

1个回答

  • (1)f(x)=cosx(asinx-cosx)+cos2([π/2]+x)

    =[a/2]sin2x-cos2x,

    由f(?

    π

    3)=f(0),解得a=2

    3

    故f(x)=[a/2]sin2x-cos2x=

    3sin2x-cos2x=2sin(2x-[π/6]),

    故单调递减区间为[kπ+

    π

    3,kπ+

    6],k∈Z

    (2)由

    a2+c2?b2

    a2+b2?c2=

    c

    2a?c,可解得2sinAcosB=sinA,

    ∵sinA≠0,∴2cosB=1,即cosB=[1/2],又0<B<π

    ∴B=[π/3],又A+[π/3]>

    π

    2,

    ∴[π/6<A<

    π

    2],

    则f(A)=2sin(2A-[π/6]),[π/6]<2A?

    π

    6<

    6,

    ∴2×

    1

    2<f(A)<1×2,即f(A)∈(1,2].