如图,A,B是公路l(l为东西走向)两旁的两个村庄,

2个回答

  • 设定直线AB交叉直线L于O,

    既然B村在A村的南偏东45°方向上,

    AC = CO ;BD = DO

    CO = 1 ;DO = 2

    AO = √(AC² + CO²)

    = √(1 + 1)

    = √2

    BO = √(BD² + DO²)

    = √(2 + 2)

    = 2

    AB的距离为 AO + BO

    = (√2) + 2

    = 1.4142 + 2

    = 3.4142 km

    P点是AB的中间,也就是,

    AP = BP = (2 + √2)/2 = 1.7071

    拉长AC的直线,并从P点向西画条直线交叉拉长过后的AC直线,并交叉于Q.

    AQ的长度是,

    AP = √(AQ² + PQ²) ,AQ = PQ

    AP² = 2AQ²

    AQ = AP/√2

    AQ = 1.4142 = PQ

    CQ = AQ - AC

    = 1.4142 - 1

    = 0.4142

    CP = √(CQ² + PQ²)

    = √(0.1716 + 2)

    = √2.1716

    = 1.4736km