解题思路:(1)由四边形ABCD,CEFG都是正方形,得到CB=CD,CG=CE,∠BCG=∠DCE=90°,于是Rt△BCG≌Rt△DCE,得到BG=DE,∠CBG=∠CDE,根据三角形内角和定理可得到∠DHG=∠GCB=90°,即BG⊥DE.
(2)BG和DE还有上述关系.由CB=CD,CG=CE,∠BCG=∠DCE,则△DCE可看作是△BCG绕C顺时针旋转90°得到,根据旋转的性质即可得到BG=DE,BG⊥DE.
(1)BG=DE,BG⊥DE.理由如下:
∵四边形ABCD,CEFG都是正方形,
∴CB=CD,CG=CE,∠BCG=∠DCE=90°,
∴Rt△BCG≌Rt△DCE,
∴BG=DE,∠CBG=∠CDE,
而∠BGC=∠DGH,
∴∠DHG=∠GCB=90°,
即BG⊥DE.
∴BG=DE,BG⊥DE;
(2)BG和DE还有上述关系:BG=DE,BG⊥DE.
理由如下:∵CB=CD,CG=CE,∠BCG=∠DCE,
∴△DCE可看作是△BCG绕C顺时针旋转90°得到,
∴BG=DE,BG⊥DE.
点评:
本题考点: 旋转的性质;全等三角形的判定与性质;正方形的性质.
考点点评: 本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.同时考查了正方形的性质和三角形全等的判定与性质.