tanA-tanB
=sinA/cosA-sinB/cosB
=(sinAcosB-sinBcosA)/(cosAcosB)
=sin(A-B)/(cosAcosB)
=sin(π/6)/(cosAcosB)
=1/(2cosAcosB)
=2√3/3=2/√3
2cosAcosB=√3/2
cosAcosB=√3/4
tanA-tanB
=sinA/cosA-sinB/cosB
=(sinAcosB-sinBcosA)/(cosAcosB)
=sin(A-B)/(cosAcosB)
=sin(π/6)/(cosAcosB)
=1/(2cosAcosB)
=2√3/3=2/√3
2cosAcosB=√3/2
cosAcosB=√3/4