1、因为pm,pn与函数f(x)相切,由于切线的斜率等于函数在切点的导数,因此有(1-t*x^-2)(x-1)=x+t/x.化简即得x^2+2tx-t=0.
2、g^2(t)=(x1-x2)^2+(x1-x2+t/x1-t/x2)^2.由根与系数的关系,有x1+x2=-2t,x1x2=t.并且x1^2+x2^2=4t^2-t.将(x1-x2)^2+(x1-x2+t/x1-t/x2)^2展开化简为4t^2-4t.开根号即得g(t).
1、因为pm,pn与函数f(x)相切,由于切线的斜率等于函数在切点的导数,因此有(1-t*x^-2)(x-1)=x+t/x.化简即得x^2+2tx-t=0.
2、g^2(t)=(x1-x2)^2+(x1-x2+t/x1-t/x2)^2.由根与系数的关系,有x1+x2=-2t,x1x2=t.并且x1^2+x2^2=4t^2-t.将(x1-x2)^2+(x1-x2+t/x1-t/x2)^2展开化简为4t^2-4t.开根号即得g(t).