设a,b是实数,则a方+ab+b方-a-2b的最小值是

2个回答

  • 设2元函数 f(a,b) = a^2 + ab + b^2 - a - 2b

    f'_a = 2a + b - 1 = 0

    f'_b = a + 2b - 2 = 0

    得 a = 0, b = 1.

    又,

    f''_a_a = 2

    f''_a_b = 1

    f''_b_b = 2

    f''_a_a * f''_b_b - (f''_a_b)^2 = 3 > 0.

    所以,

    2元函数 f(a,b) = a^2 + ab + b^2 - a - 2b

    在a = 0, b = 1时达到最小值f(0,1)= -1.

    如果不能用偏导数的知识.

    可以配方.

    a^2 + ab + b^2 - a - 2b

    = (a + b/2)^2 + (3/4)b^2 - (a + b/2) - 3b/2

    = (a + b/2 - 1/2)^2 - 1/4 + (3/4)[(b - 1)^2 - 1]

    = (a + b/2 - 1/2)^2 + (3/4)[(b - 1)^2] - 1

    >= -1

    所以,最小值是 -1.

    而且,在 a + b/2 = 1/2, b = 1时达到最小值.

    也就是在 a = 0, b = 1时达到最小值-1.