已知函数f(x)=2/x-1 (1)判断f(x)在(0,+∞)上的单调性并加以证明; (2)求f(x)的定义域、值域;

4个回答

  • f(x) = 2/x - 1

    ∵x在定义域内单调增,∴f(x) = 2/x - 1在定义域内单调减

    证明:

    令0<x1<x2

    f(x2)-f(x1) = (2/x2 - 1)-( 2/x1 - 1)

    = 2/x2 - 2/x1

    = 2(x1-x2)/(x1x2)

    ∵0<x1<x2

    ∴x1-x2<0,x1x2>0

    ∴f(x2)-f(x1) =2(x1-x2)/(x1x2)<0

    ,∴f(x)在(0,+∞)上单调减

    分母不为零:x≠0

    定义域:(-∞,0)U(0,+∞)

    x≠0,∴y≠-1

    值域(-∞,-1)U(-1,+∞)

    f(x) = 2x - 2/x

    令0<x1<x2

    f(x2)-f(x1) = (2x2 - 2/x2)-(2x1 - 2/x1)

    = 2(x2-x1)+2(1/x1-1/x2)

    =2(x2-x1)+2(x2-x1)/(x1x2)

    ∵0<x1<x2

    ∴∴x2-x1>0,x1x2>0

    ∴f(x2)-f(x1) =2(x2-x1)+2(x2-x1)/(x1x2)>0

    ∴f(x)在(0,+∞)上单调增