n>=3,
a(n)=a(n-1)/(1+a(n-1))=(a(n-2)/(1+a(n-2)))/(1+a(n-2)/(1+a(n-2)))
=a(n-2)/(1+2a(n-2))=(a(n-3)/(1+a(n-3)))/(1+2a(n-3)/(1+a(n-3)))
=a(n-3)/(1+3a(n-3))=.
.
=a2/(1+(n-2)a2)
=a1/(1+(n-1)a1)
=1/(n+1)
n=1,2通项满足通项公式,a(n)=1/(n+1)
a(n)/n=1/(n(n+1))=1/n-1/(n+1)
Sn=1-1/2+1/2-1/3+.+1/n-1/(n+1)
=1-1/(n+1) 无数项相加时,Sn=1