1+2+3+...+N=N(N+1)/2
1/(1+2+3+...+N)=2/[N(N+1)]=2*[1/N-1/(N+1)]
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+...+20)
=1+2*(1/2-1/3)+2*(1/3-1/4)+2*(1/4-1/5)+...+2*(1/20-1/21)
=1+2*(1/2-1/3+1/3-1/4+1/4-1/5+...+1/20-1/21)
=1+2*(1/2-1/21)
=1+1-2/101
=40/21