已知数列{an}的前n项和Sn=-an-(1/2)^(n-1)+2(n为正整数).令bn=2^n*an,求证数列{bn}

1个回答

  • Sn=-an-(1/2)^(n-1)+2

    所以 S(n-1)=-a(n-1)-(1/2)^(n-2)+2

    相减

    Sn-S(n-1)=an=-an-(1/2)^(n-1)+a(n-1)+(1/2)^(n-2)

    (1/2)^(n-2)-(1/2)^(n-1)=(1/2)^(n-2)-1/2*(1/2)^(n-2)=(1/2)^(n-2)

    2an=a(n-1)+(1/2)^(n-2)

    2an-(1/2)^(n-3)=a(n-1)+(1/2)^(n-2)-(1/2)^(n-3)

    2[an-(1/2)^(n-2)]=a(n-1)-(1/2)^(n-3)

    [an-(1/2)^(n-2)]/[a(n-1)-(1/2)^(n-3)]=1/2

    所以an-(1/2)^(n-2)是等比数列,q=1/2

    a1=S1=-a1-(1/2)^(1-1)+2=1-a1

    a1=1/2

    所以a1-(1/2)^(1-2)=1/2-2=-3/2

    所以an-(1/2)^(n-2)=(-3/2)*(1/2)^(n-1)=(-3/4)*(1/2)^(n-2)

    所以an=(-3/4)*(1/2)^(n-2)+(1/2)^(n-2)

    即an=(1/4)*(1/2)^(n-2)=(1/2)^n

    bn=2^n*an=1,是常数列

    所以bn是等差数列