Sn=-an-(1/2)^(n-1)+2
所以 S(n-1)=-a(n-1)-(1/2)^(n-2)+2
相减
Sn-S(n-1)=an=-an-(1/2)^(n-1)+a(n-1)+(1/2)^(n-2)
(1/2)^(n-2)-(1/2)^(n-1)=(1/2)^(n-2)-1/2*(1/2)^(n-2)=(1/2)^(n-2)
2an=a(n-1)+(1/2)^(n-2)
2an-(1/2)^(n-3)=a(n-1)+(1/2)^(n-2)-(1/2)^(n-3)
2[an-(1/2)^(n-2)]=a(n-1)-(1/2)^(n-3)
[an-(1/2)^(n-2)]/[a(n-1)-(1/2)^(n-3)]=1/2
所以an-(1/2)^(n-2)是等比数列,q=1/2
a1=S1=-a1-(1/2)^(1-1)+2=1-a1
a1=1/2
所以a1-(1/2)^(1-2)=1/2-2=-3/2
所以an-(1/2)^(n-2)=(-3/2)*(1/2)^(n-1)=(-3/4)*(1/2)^(n-2)
所以an=(-3/4)*(1/2)^(n-2)+(1/2)^(n-2)
即an=(1/4)*(1/2)^(n-2)=(1/2)^n
bn=2^n*an=1,是常数列
所以bn是等差数列