解题思路:由该函数的性质可知,该函数的最小值与抛物线的对称轴的位置有关,于是需要对对称轴的位置进行分类讨论.
∵y=(x-a)2+1-a2,
∴抛物线y=x2-2ax+1的对称轴方程是x=a.(1分)
(1)当-2≤a≤1时,由图①可知,当x=a时,该函数取最小值h(a)=1-a2;(3分)
(2)当a<-2时,由图②可知,当x=-2时,该函数取最小值h(a)=4a+5;(5分)
(3)当a>1时,由图③可知,当x=1时,该函数取最小值h(a)=-2a+2(7分)
综上,函数的最小值为h(a)=
4a+5 a<−2
1−a2 −2≤a≤1
−2a+2,a>1.(8分)
当a<-2时h(a)<-3(9分)
当-2≤a≤1时-3≤h(a)≤1(10分)
当a>1时h(a)<0(11分)
∴h(a)≤1
∴h(a)max=1(12分)
点评:
本题考点: 二次函数在闭区间上的最值.
考点点评: 解决二次函数的最值问题,应该先求出二次函数的对称轴,判断出对称轴与区间的关系,进一步判断出二次函数的单调性,进一步求出函数的最值.