直角三角形面积=ab/2=ch/2,即ab=ch
勾股定理:c^2=a^2+b^2
(c+h)^2
=c^2+2ch+h^2
=a^2+b^2+2ab+h^2
=(a+b)^2+h^2
显然h^2>0,就有(a+b)^2+h^2>(a+b)^2
即:(c+h)^2>(a+b)^2
两边开方即得:c+h>a+b.
直角三角形面积=ab/2=ch/2,即ab=ch
勾股定理:c^2=a^2+b^2
(c+h)^2
=c^2+2ch+h^2
=a^2+b^2+2ab+h^2
=(a+b)^2+h^2
显然h^2>0,就有(a+b)^2+h^2>(a+b)^2
即:(c+h)^2>(a+b)^2
两边开方即得:c+h>a+b.