1.根据P点任意,不妨设P(-c,-b^2/a)
则对应的B(0,-b),
Kpo=b^2/ac
KBF2=b/c
由于直线BF2与PO平行,则Kpo=b^2/ac=KBF2=b/c,得a=b
双曲线为等轴双曲线,离心率为√2
2.由1知,e=√2,则KBF2=√2/2
则直线BF2的方程为 y=√2/2(x-c)
与双曲线方程联立消y,再根据a=b=√2/2c消元整理得
x^2+√2ax-4a^2=0
M,N两点横坐标为该方程的二根
根据弦长公式|MN|=√(k^2+1)√[(x1+x2)^2-4x1x2]
从而可得a^2=16/3=b^2
所以双曲线方程为x^2/16/3-y^2/16/3=1