∫(1/x^2)cos(1/x)dx
=-∫cos(1/x)d(1/x)
=-sin(1/x)+C
2.
∵(arcsinx)'=xf(x)=(1-x^2)^ (-1/2)
∴f(x)=[x (1-x^2)^ 1/2] ^(-1)
1/f(x)=x(1-x^2) ^1/2
∫1/f(x)dx =∫x(1-x^2) ^1/2dx
=-1/2∫(1-x^2)^ 1/2 d(1-x^2)
= -1/3(1-x^2) ^(3/2) + C
3.∫(lnx/x)dx
=∫(lnx)dlnx
=1/2(lnx)^2+C