延长BF,交AC延长线于E,做DM⊥AB于M
∵BF⊥AF即BE⊥AF
AF平分∠BAC即∠BAE
∴∠AFE=∠AFB=90°
∠EAF=∠BAF
∵AF=AF
∴△AEF≌△ABF(ASA)
∴BF=EF即BE=2BF
∵∠ACD=∠BFD=90°
∠ADC=∠BDF(对顶角)
∴△ADC∽△BDF
∴∠CAD=∠DBF即∠CAD=∠CBE
∴∠MAD=∠CBE(∠MAD=∠BAF=∠CAD=∠EAF)
∵AC=BC
∠DMA=∠ECB=90°
∴△DMA≌△ECB(ASA)
∴AD=BE=2BF