arctanx/y=1/2ln(x²+y²)
两边同时对x求导,得
1/[1+(x/y)²]*(y-xy')/y²=1/2*1/(x²+y²)*(2x+2yy')
(y-xy')/(x²+y²)=(x+yy')/(x²+y²)
y-xy'=x+yy'
(x+y)y'=y-x
y'=(y-x)/(x+y)
所以
dy=[(y-x)/(x+y)]*dx
arctanx/y=1/2ln(x²+y²)
两边同时对x求导,得
1/[1+(x/y)²]*(y-xy')/y²=1/2*1/(x²+y²)*(2x+2yy')
(y-xy')/(x²+y²)=(x+yy')/(x²+y²)
y-xy'=x+yy'
(x+y)y'=y-x
y'=(y-x)/(x+y)
所以
dy=[(y-x)/(x+y)]*dx