f(x)=sin(π/4+x)sin(π/4-x)+√3sinxcosx
=sin(π/4+x)cos(x+π/4)+√3sinxcosx
=(1/2)sin(π/2+2x)+√3sinxcosx
=(1/2)cos2x+√3/2sin2x
=sin(2x+π/6)
f(A/2)=sin(A+π/6)=1
A=π/3
sinB+sinC
=sin(2π/3-C)+sinC
=(√3/2)cosC-(1/2)sinC+sinC
=(√3/2)cosC+(1/2)sinC
=sin(C+π/3)
因为 0