∵(sec²x-cosx)/(1-cosx)
=(1/cos²x-cosx)/(1-cosx)
=(1-cos³x)/[cos²x(1-cosx)]
=(1-cosx)(1+cosx+cos²x)/[cos²x(1-cosx)]
=(1+cosx+cos²x)/cos²x
∴lim(x-->0)(sec²x-cosx)/(1-cosx)
=lim(x-->0)(1+cosx+cos²x)/cos²x
=(1+1+1)/1
=3
∵(sec²x-cosx)/(1-cosx)
=(1/cos²x-cosx)/(1-cosx)
=(1-cos³x)/[cos²x(1-cosx)]
=(1-cosx)(1+cosx+cos²x)/[cos²x(1-cosx)]
=(1+cosx+cos²x)/cos²x
∴lim(x-->0)(sec²x-cosx)/(1-cosx)
=lim(x-->0)(1+cosx+cos²x)/cos²x
=(1+1+1)/1
=3