给定an=log(n+2),n属于N+,定义使a1*a2*...ak为整数的k,k属于N+,叫企盼数.
1个回答
k只需满足log(k+2)为整数
即k=2^p-2
根据题意,0
相关问题
给定an=log(n+1)(n+2),n∈N^*,定义使a1*a2*a3...ak为整数的k(k∈N^*)叫做"企盼数"
an=log(n+1)(n+2),定义使a1a2...ak为整数的k叫企盼数,求(1,2009)内的k的和
an=log(n+1)(n+2),定义使a1a2...ak为整数的k叫企盼数,求(1,10000)内的k的和
设an=logn+1(n+2),(n∈N*),定义使a1a2a3…ak为整数的数k(k∈N*)叫做数列{an}的企盼数,
已知数列an满足an=log(n+1)(n+2),n∈ N:,我们把使a1·a2·…·ak为整数的数k叫理想数;
已知数列{an}满足:an=logn+1(n+2)(n∈N*),定义使a1•a2•a3…ak为整数的数k(k∈N*)叫做
已知函数f(n)=log(n+1)(n+2)(n∈N*),定义使f(1),f(2)……f(K)为整数的数k(k∈N*)叫
已知数列{an}满足a1=1,an=logn(n+1)(n≥2,n∈N*).定义:使乘积a1•a2•…•ak为正整数的k
已知数列{an}满足:an=logn+1(n+2),定义使a1•a2•a3…ak为整数的数k(k∈N*)叫做希望数,则区
1,2……n共有n!种排列a1,a2……an(n≥2,n属于N*)其中满足“对所有k=1,2……n”都有ak≥k-2的不