设所求式为s,则(3^2-1)s=(3^2-1)(3^2+1)(3^4+1)...(3^64+1)=(3^4-1)(3^4+1)(3^8+1)...(3^64+1)=3^128-1所以s=(3^2+1)(3^4+1)(3^8+1)……(3^64+1)=(3^128-1)/(3^2-1)=1/8(3^128-1)
计算(3^2+1)(3^4+1)(3^8+1)……(3^64+1)
2个回答
相关问题
-
计算(1+3)(1+3^2)(1+3^4)……(1+3^64)+1
-
2(3+1)(3+1)(3∧4+1)(3∧8+1)…(3∧64+1)+2=
-
(3²+1)(3^4+1)(3^8+1)...(3^64+1)
-
计算:①-³√-1+√25-√144+³√64 ②2√3-3√1\3-√8+1\2√12+1\5√5
-
计算:√1-√3×(1-√3)-3√-64-|√3-2|
-
计算:0.008^(-1/3)+64^(3/4)-0.2^(-1)
-
计算:(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)
-
根号化简计算(1)√0.64*5√9/25÷1/4√25(2)(√48-4√1/8)-(3√1/3-2√0.5)(3)(
-
计算4√1/2+3√1/3-√8
-
计算:2(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)+1