令S1=a1=t
S2=a1+a2=2a1+2=2t+2
S3=a1+a2+a3=3a1+6=3t+6
2√S2=√S1+√S3,
2√(2t+2)=√t+√(3t+6),
4(2t+2)=t+3t+6+2√[t(3t+6)]
8t+8=4t+6+2√(3t²+6t)
4t+2=2√(3t²+6t)
16t²+16t+4=4(3t²+6t)
16t²+16t+4=12t²+24t
4t²-8t+4=0
t²-2t+1=0
(t-1)²=0
t=1
即a1=1
an=a1+(n-1)d=1+2(n-1)=2n-1
∴an=2n-1
bn=(an)/(2^n)=(2n-1)/(2^n)
Tn=b1+b2+b3+...+bn
2Tn=2b1+2b2+2b3+...+2bn
2Tn-Tn
=(2b1+2b2+2b3+...+2bn)-(b1+b2+b3+...+bn)
=2b1+(2b2-b1)+(2b3-b2)+...+(2bn-b[n-1])-bn
=1+(3/2-1/2)+(5/4-3/4)+...+[(2n-1)/2^(n-1)-(2n-3)/2^(n-1)] - (2n-1)/2^n
=1+1+[1/2+1/4+...+1/2^(n-2)] - (2n-1)/2^n
=2+ [1-1/2^(n-2)] - (2n-1)/2^n
=3- (2n+3)/2^n
∴Tn=3- (2n+3)/2^n