(2sin2α/1+cos2α)*(cosα)^2/cos2α=多少
1个回答
(2sin2α/1+cos2α)*(cosα)^2/cos2α
=(2sin2α)/(2cos²α) *(cos²α)/(cos2α)
=sin2α/cos2α
=tan2α
相关问题
化简:1+sin^2α-cos^2α-sinα/2sinαcosα-cosα
已知2sinα+cosα/cosα-sinα=1求值:2sin^2α-cos^2α+3sinαcosα-2
sin α+sin^2α=1,则cos^2 α+cos^6 α+cos^8α=多少?,
sinα+cosα/2cosα-sinα=1/3 则,tan2α=?cos2α/1+sin2α=?
tanα=1/2,求①sin^2 α+2cos^2 α ②sinα*cosα+2cos^2α
化简:(1+sinα+cosα)(sinα/2 -cosα/2)/√2+2cosα
[(sin2α/1-cos2α)*(1-cosα/cosα)]*cot(α/2)
tanα=sin2α/(1+cos2α)=(1-cos2α)/sin2α怎么得出tanα=(1+sin2α-cos2α)
tan(α/2)=sin(α/2) /cos(α/2)=【2sin(α/2)cos(α/2)】 /【 2(cosα/2)
[sin4α/(1+cosα)]×[cos2α/(1+cos2α)]×[cosα/(1+cosα)]×{cos(α/2)