a(n+1)=4a(n)-3(n)+1
a(n+1)-(n+1)=4(an-n)
[a(n+1)-(n+1)]/(an-n)=4
故数列{an-n}是一个等比数列,公比q=4,首项是a1-1=1.
an-n=1*4^(n-1)
故an=4^(n-1)+n
Sn=1*(1-4^n)/(1-4)-(1+n)n/2=1/3(4^n-1)-(1+n)n/2
a(n+1)=4a(n)-3(n)+1
a(n+1)-(n+1)=4(an-n)
[a(n+1)-(n+1)]/(an-n)=4
故数列{an-n}是一个等比数列,公比q=4,首项是a1-1=1.
an-n=1*4^(n-1)
故an=4^(n-1)+n
Sn=1*(1-4^n)/(1-4)-(1+n)n/2=1/3(4^n-1)-(1+n)n/2