cos(π/4-x)=sin(π/4+x)
所以cos(π/4+x)cos(π/4-x)=cos(π/4+x)sin(π/4+x)=sin(π/2+2x)/2=(√3)/4
所以sin(π/2+2x)=(√3)/2
又因为x∈(3π/4,π),所以π/2+2x∈(2π,5π/2)
所以π/2+2x=7π/3,x=11π/12
所以sinx+cosx=√2sin(x+π/4)=√2sin(7π/6)=-(√2)/2
cos(π/4-x)=sin(π/4+x)
所以cos(π/4+x)cos(π/4-x)=cos(π/4+x)sin(π/4+x)=sin(π/2+2x)/2=(√3)/4
所以sin(π/2+2x)=(√3)/2
又因为x∈(3π/4,π),所以π/2+2x∈(2π,5π/2)
所以π/2+2x=7π/3,x=11π/12
所以sinx+cosx=√2sin(x+π/4)=√2sin(7π/6)=-(√2)/2