解题思路:因为△ABC是等边三角形,又因为AD:DB=BE:EC=CF:FA.所以AD=BE=CF,DB=EC=FA.又因为∠A=∠B=∠C=60°,所以可以断定△ADF,△BDE,△CEF3个三角形全等.所以得DF=FE=DE.因此△DEF也是等边三角形,所以与其相似.
∵△ABC是等边三角形,
∴AB=BC=AC,
∵AD:DB=BE:EC=CF:FA,
∴AD=BE=CF,DB=EC=FA,
∵在△BED和△CFE中,
BD=CE
∠B=∠C=60°
BE=CF,
∴△BED≌△CFE(SAS),
同理可证明:△BED≌ADF,
∴DE=EF=DF,
∴△DEF也是等边三角形,
∴△ABC∽△DEF.
故答案为:△DEF.
点评:
本题考点: 相似三角形的判定;等边三角形的性质.
考点点评: 本题考查了等边三角形的性质和判定、全等三角形的判定和性质以及相似三角形的判定,题目的难度不小.