已知圆C:x2+y2-2x+4y-4=0.问是否存在斜率为1的直线l,使l被圆C截得弦AB,以AB为直径的圆经过原点.

1个回答

  • let A(x1,y1) ,B(x2,y2)

    C:x^2+y^2-2x+4y-4=0 (1)

    斜率为1的直线l : y=x+c (2)

    sub (2) into (1)

    x^2+(x+c)^2-2x+4(x+c)-4=0

    2x^2 + (2+2c)x + c^2+4c-4 =0

    x1+x2 = -(1+c)

    x1x2 = (c^2+4c-4)/2

    similarly

    (y-c)^2+y^2-2(y-c)+4y-4=0

    2y^2 +(2-2c)y +c^2+2c-4 =0

    y1+y2 = -(1-c)

    y1y2 = (c^2+2c-4)/2

    |AB|^2 = (x1-x2)^2 +(y1-y2)^2

    =(x1+x2)^2-4x1x2 + (y1+y2)^2 - 4y1y2

    = (1+c)^2 - 2(c^2+4c-4) + (1-c)^2 -2(c^2+2c-4)

    = 18-12c-2c^2

    |AB|^2 = 4r^2

    r^2 = (18-12c-2c^2)/4

    O' = mid point of AB

    =( (x1+x2)/2 , (y1+y2)/2 )

    =( -(1+c)/2 , -(1-c)/2)

    equation of cicle with centre O' and radius r : C1

    [x+ (1+c)/2]^2 +[y+(1-c)/2 ]^2 = (18-12c-2c^2)/4

    orgin (0,0)

    [ (1+c)/2]^2 +[(1-c)/2 ]^2 = (18-12c-2c^2)/4

    1+c^2 =9-6c-c^2

    c^2+3c-4=0

    c=-4 or 1

    => 存在斜率为1的直线l