令x+y=u;则F(x,y)=F(u)=e^u.
即F(u)在u=0处展成幂级数.
因为n阶导数 F^(n) (u)=e^u,则F^(n) (0)=e^0 =1.
所以有:F(u)=(e^0·u^0)/0!+ (e^0·u^1)/1!+ (e^0·u^2)/2!+.
=1+u+ u^2/2!+ u^3/3!+ u^4/4!+.
则:F(x,y)=1+(x+y)+(x+y)^2/2!+ (x+y)^3/3!+ (x+y)^4/4!+.
令x+y=u;则F(x,y)=F(u)=e^u.
即F(u)在u=0处展成幂级数.
因为n阶导数 F^(n) (u)=e^u,则F^(n) (0)=e^0 =1.
所以有:F(u)=(e^0·u^0)/0!+ (e^0·u^1)/1!+ (e^0·u^2)/2!+.
=1+u+ u^2/2!+ u^3/3!+ u^4/4!+.
则:F(x,y)=1+(x+y)+(x+y)^2/2!+ (x+y)^3/3!+ (x+y)^4/4!+.