f(x)=√3sinx+acosx
(1)函数的最大值为√(√3)²+a²=2
即 3+a²=4 解得 a=1
(2)
f(x)=√3sinx+cosx
=2(√3/2sinx+1/2cosx)
=2sin(x+π/6)
(3)区间[-π/6,11π/6]上,
0≤x+π/6≤2π
所以递增区间为[-π/6,π/3]∪[4π/3,11π/6]
递减区间为[π/3,4π/3]
f(x)=√3sinx+acosx
(1)函数的最大值为√(√3)²+a²=2
即 3+a²=4 解得 a=1
(2)
f(x)=√3sinx+cosx
=2(√3/2sinx+1/2cosx)
=2sin(x+π/6)
(3)区间[-π/6,11π/6]上,
0≤x+π/6≤2π
所以递增区间为[-π/6,π/3]∪[4π/3,11π/6]
递减区间为[π/3,4π/3]