延长AE到M,使EM=AE,连结DM
易证△DEM ≌△CEA
∴∠C=∠MDE,DM=AC
又BD=DC=AC
∴DM=BD,∠ADC=∠CAD
又∠ADB=∠C+∠CAD
∠ADM=∠MDE+∠ADC
∴∠ADM=∠ADB
∴△ADM ≌△ADB
∴∠BAD=∠MAD
即AD平分∠BAE
延长AE到M,使EM=AE,连结DM
易证△DEM ≌△CEA
∴∠C=∠MDE,DM=AC
又BD=DC=AC
∴DM=BD,∠ADC=∠CAD
又∠ADB=∠C+∠CAD
∠ADM=∠MDE+∠ADC
∴∠ADM=∠ADB
∴△ADM ≌△ADB
∴∠BAD=∠MAD
即AD平分∠BAE