y=cosx+sinx
=√2[(√2/2)cosx+(√2/2)sinx]
=√2[sin(π/4)cosx+cos(π/4)sinx]
=√2sin(π/4+x)
x属于[0,二分之pai]
则
π/4+x∈[π/4,3π/4]
则
sin(π/4+x)∈[√2/2,1]
y∈[1,√2]
y=cosx+sinx
=√2[(√2/2)cosx+(√2/2)sinx]
=√2[sin(π/4)cosx+cos(π/4)sinx]
=√2sin(π/4+x)
x属于[0,二分之pai]
则
π/4+x∈[π/4,3π/4]
则
sin(π/4+x)∈[√2/2,1]
y∈[1,√2]