求广义积分∫1/x²(x+1)dx 积分区间为【1,

2个回答

  • 1/x^2(x+1)=(Ax+B)/x^2+C/(x+1)

    =[(Ax+B)(x+1)+Cx^2]/x^2(x+1)

    =[Ax^2+Ax+Bx+B+Cx^2]/x^2(x+1)

    =[(A+C)x^2+(A+B)x+B]/x^2(x+1)

    A+C=0

    A+B=0

    B=1

    A=-1

    C=1

    所以

    1/x^2(x+1)=(-x+1)/x^2+1/(x+1)

    ∫1/x²(x+1)dx

    =∫(-x+1)dx/x^2+∫dx/(x+1)

    =∫-dx/x+∫dx/x^2+∫d(x+1)/(x+1)

    =-lnx+∫dx*x^(-2)+ln(x+1)+C

    =ln(x+1)-lnx-1/x+C

    =ln(x+1)/x-1/x+C

    当x->∞时

    原式=ln(x+1)/x-1/x+C=ln(1+1/x)-1/x+C=ln1-0+C=C

    当x->1时

    原式=ln2-1+C

    所以∫1/x²(x+1)dx 积分区间为【1,正无穷)=C-(ln2-1+C)=1-ln2