以下用“”表示“向量MN”.
设A(x1,y1),B(x2,y2),C(x3,y3),
已知*=*=*,即x1x2+y1y2=x2x3+y2y3=x1x3+y1y3 ①
=(x3-x2,y3-y2),=(x1,y1),
*=x1*(x3-x2)+y1*(y3-y2)=(x1x3+y1y3)-(x1x2+y1y2)=0 (利用①)
所以⊥
将x1=2,y1=1,x2=0,y2=3代入①得:
2*0+1*3=0*x3+3y3,2*0+1*3=2x3+1*y3
解得x3=1,y3=1,所以C(1,1)
|OA|²=2²+1²=5,|OB|²=0²+3²=9
tan∠OAB=|OB|/|OA|=√5/3
①②③④⑤⑥