解题思路:(1)由长方体的几何特征可得BC⊥平面BB1E,由面面垂直的判定定理可得平面BB1E⊥平面BCE,又由平面B1CE⊥平面BCE,故B1E⊥平面BCE,则∠BEC就是平面B1CE与平面B1BE所成二面角的平面角α.解Rt△CBE可得平面B1CE与平面B1BE所成二面角α的大小
(2)利用等体积示,求三棱锥C-AEB1的体积,解Rt△B1CE,求出其面积,设A到平面B1EC的距离为h,可得答案.
(1)∵BC⊥平面BB1E,
∴平面BB1E⊥平面BCE,
又平面B1CE⊥平面BCE,
∴B1E⊥平面BCE,
∴CE⊥B1E,BE⊥B1E
∴∠BEC就是平面B1CE与平面B1BE所成二面角的平面角α.
设∠AEB=β,则∠A1B1E=β
∴AE=ABcotβ=cotβ,
A1E=A1B1•tanβ=tanβ
∵AE+EA1=AA1=2,
∴cotβ+tanβ=2
解得tanβ=1.即AE=A1E=1
在Rt△CBE中,BC=1,BE=
2
∴tanα=
1
2=
2
2.
∴α=arctan
2
2
(2)在三棱锥C-AEB1中,S△AEB1=
1
2×AE•A1B1=
1
2,CB=1,从而VC−AEB1=
1
3×
1
2×1=
1
6
在Rt△B1CE中,CE=
BE2+BC2=
点评:
本题考点: 二面角的平面角及求法;点、线、面间的距离计算.
考点点评: 本题考查的知识点是二面角的平面角及求法,点到平面的距离,其中(1)的关键是求出∠BEC就是平面B1CE与平面B1BE所成二面角的平面角,(2)中几何法求点面距离时,往往是采用等体积法.