联立解 y=x,xy=1,得第一象限交点 (1,1),则
∫∫ x^2/y^2dxdy = ∫(1/y^2)dy∫ x^2dx
= ∫ 1/y^2dy[x^3/3]∫
= (1/3)∫ (y-1/y^5)dy
= (1/3)[y^2/2+1/(4y^4)] = 27/64
联立解 y=x,xy=1,得第一象限交点 (1,1),则
∫∫ x^2/y^2dxdy = ∫(1/y^2)dy∫ x^2dx
= ∫ 1/y^2dy[x^3/3]∫
= (1/3)∫ (y-1/y^5)dy
= (1/3)[y^2/2+1/(4y^4)] = 27/64