{an}为等差数列,公差为d,则
an=a1+(n-1)d,
C^an=C^[a1+(n-1)d],
则C^an/C^a(n-1)=C^[a1+(n-1)d]/C^[a1+(n-2)d]=C^d 为定值,
而C^a1≠0,
所以{C^an}(c不等于0)为等比数列,公比为 q=C^d.
{an}为等差数列,公差为d,则
an=a1+(n-1)d,
C^an=C^[a1+(n-1)d],
则C^an/C^a(n-1)=C^[a1+(n-1)d]/C^[a1+(n-2)d]=C^d 为定值,
而C^a1≠0,
所以{C^an}(c不等于0)为等比数列,公比为 q=C^d.